Home
Class 12
PHYSICS
Two sinusoidal waves are superposed. The...

Two sinusoidal waves are superposed. Their equations are
`y_(1)=Asin(kx-omegat+(pi)/(6))and y_(2)=Asin(kx-omegat-(pi)/(6))`
the equation of their resultant is

Promotional Banner

Similar Questions

Explore conceptually related problems

y(xt)=asin(kx-omegat+phi) represents a

y(xt)=asin(kx-omegat+phi) represents a

Three travelling waves are superimposed. The equations of the wave are y_(!)=A_(0) sin (kx-omegat), y_(2)=3 sqrt(2) A_(0) sin (kx-omegat+phi) and y_(3)=4 A_(0) cos (kx-omegat) find the value of phi ("given "0 le phi le pi//2) if the phase difference between the resultant wave and first wave is pi//4

Three travelling waves are superimposed. The equations of the wave are y_(!)=A_(0) sin (kx-omegat), y_(2)=3 sqrt(2) A_(0) sin (kx-omegat+phi) and y_(3)=4 A_(0) cos (kx-omegat) find the value of phi ("given "0 le phi le pi//2) if the phase difference between the resultant wave and first wave is pi//4

Two simple harmonic motions A and B are given respectively by the following equations. y_(1)=asin[omegat+(pi)/(6)] y_(2)=asin[omegat+(3pi)/(6)] Phase difference between the waves is

If a waveform has the equation y_1=A_1 sin (omegat-kx) & y_2=A_2 cos (omegat-kx) , find the equation of the resulting wave on superposition.

If a waveform has the equation y_1=A_1 sin (omegat-kx) & y_2=A_2 cos (omegat-kx) , find the equation of the resulting wave on superposition.

On the superposition of the two waves given as y_1=A_0 sin( omegat-kx) and y_2=A_0 cos ( omega t -kx+(pi)/6) , the resultant amplitude of oscillations will be