Home
Class 11
MATHS
For all values of A and B tan(A+B)=(tanA...

For all values of A and B `tan(A+B)=(tanA+tanB)/(1-tanAtanB)` and `tan(A-B)=(tanA-tanB)/(1+tanAtanB)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that- sin(A-B)/sin(A+B)= (tanA-tanB)/(tanA+tanB)

Prove that- sin(A-B)/sin(A+B)= (tanA-tanB)/(tanA+tanB)

tanA +tanB + tanC = tanA tanB tanC if

If A and B are acute angles such that tanA=(1)/(3) , tanB=(1)/(2) and tan(A+B)=(tanA+tanB)/(1-tanAtanB) , Then find the value of A+B .

Prove that: (tanA + tanB)/(cotA+cotB)=tanAtanB

If A+B=225^(@) , then (tanA)/(1-tanA).(tanB)/(1-tanB)=?

In DeltaABC , tanA+tanB+tanC=tanAtanBtanC

If A and B are supplementary angles then find the value of (tanA+tanB)/(1-tanAtanB)

If sinA=1/sqrt2, cosB=sqrt3/2 then (tanA+tanB)/(1-tanAtanB)=