Home
Class 11
MATHS
Prove that sin(A+B+C)=sinAcosBcosC+cosAs...

Prove that `sin(A+B+C)=sinAcosBcosC+cosAsinBcosC+cosAcosBsinC-sinAsinBsinC` `cos(A+B+C)=cosAcosBcosC-cosAsinBsinC-sinAcosBsinC-sinAsinBcosC`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (sin(B-C))/(cos B cos C)+(sin(C-A))/(cos C cos A)+(sin(A-B))/(cos A cos B)=0

Prove that: (sin(B-C))/(cos B cos C)+(sin(C-A))/(cos C cos A)+(sin(A-B))/(cos A cos B)=0

cos(A+B)+sin C=sin(A+B)-cos C

Prove that a cos A+b cos B+c cos C<=s

Prove that: sin(B-C)cos(A-D)+sin(C-A)cos(B-D)+sin(A-B)cos(C-D)

Prove that : 4\ R\ sin AsinB\ sin C=acosA+b\ cos B+c cosCdot

Prove that a cos A+b cos B+c cos C=4R sin A sin B sin C

Prove that: ("sin"(A-B))/(cos A cosB)+(sin(B-C))/(cos B cos C)+("sin"(C-A))/(cos C cos A)=0

Prove that in triangle ABC,cos^(2)A+cos^(2)B-cos^(2)C=1-2sin A sin B cos C

Prove that: cos(A+B+C)+cos(A-B+C)+cos(A+B-C)+cos(-A+B+C)=4cos A cos B cos C