Home
Class 11
MATHS
Using application of trignometric formul...

Using application of trignometric formulas prove that `(i)cos(pi/4+x)+cos(pi/4-x)=sqrt2cosx`
`(ii)sin((7pi)/12)cos(pi/4)-cos((7pi)/12)sin(pi/4)= sqrt3/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: cos(pi/4+A)+cos(pi/4-A)=sqrt(2)cosA

Prove that: cos((pi)/(4)+x)+cos((pi)/(4)-x)=sqrt(2)cos x

Prove that: cos((pi)/(4)+x)+cos((pi)/(4)-x)=sqrt(2)cos x

prove that sin((pi)/(4)+x)+sin((pi)/(4)-x)=sqrt(2)cos x

Prove that: cos((3 pi)/(4)+x)-cos((3 pi)/(4)-x)=sqrt(2)sin x

Prove that quad cos((pi)/(4)+x)+cos((pi)/(4)-x)=sqrt(2)cos x

Prove that: cos((3 pi)/(4)+x)-cos((3 pi)/(4)-x)=-sqrt(2)sin x

Prove that: cos((3 pi)/(4)+x)-cos((3 pi)/(4)-x)=-sqrt(2)sin x

sin (pi/2) = 2 sin(pi/4) cos (pi/4)

Prove that: i) sin(5pi)/(18) - cos(4pi)/(9) = sqrt(3)sinpi/9 ii) cos(3pi)/4+A-cos((3pi)/(4)-A)=-sqrt(2)sinA