Home
Class 11
MATHS
Prove (i) sin x sin(60 -x) sin(60+x) = 1...

Prove `(i) sin x sin(60 -x) sin(60+x) = 1/ 4 sin 3x`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sin A sin(60-A)sin(60+A)=(1)/(4)sin3A

Prove that: (i) sin 3x+"sin" 2x-"sin" x = 4 sin x cos((x)/(2))cos((3x)/(2)) (ii) ("sin" 3x+"sin" x)"sin" x+(cos 3x-cos x)cos x=0.

Prove that sin x + sin 3x + sin 5x + sin 7x=4 sin 4x cos 2x cos x.

If sin x sin(60^(@)+x)sin(60^(@)-x)=(1)/(8) then x=

If sin x sin(60^(@)-x)sin(60^(@)+x)=(1)/(4) ,then x=

Prove that: sin A sin(60^(@)-A)sin(60^(@)+A)=(1)/(4)sin3A

Prove that: sinA.sin(60^(@)+A).sin(60^(@)-A)=1/4sinA

(sin x) / (sin2x sin3x) + (sin x) / (sin3x sin4x) + (sin x) / (sin4x sin5x) + .... n

sin alpha * sin (60-alpha) sin (60 + alpha) = (1) / (4) * sin3 alpha

[" If "sin x sin(60^(@)+x)sin(60^(@)-x)=(1)/(8)" then "],[x" equals "],[n pi+(-1)^(n)(pi)/(6)],[n(pi)/(3)+(-1)^(n)(pi)/(18)],[n pi+(-1)^(n)(pi)/(3)],[(n pi)/(-1)+(-1)^(n)(pi)/(4)]