Home
Class 11
MATHS
Prove (i)sin(A+B)+sin(A-B)=2sinAcosB (ii...

Prove `(i)sin(A+B)+sin(A-B)=2sinAcosB` (ii) `sin(A+B)-sin(A-B)=2cosAsinB`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove (i)cos(A+B)+cos(A-B)=2cos A cos B(ii)cos(A-B)-cos(A+B)=2sin A sin B

sin(A+B).sin(A- B)=sin^(2)A-sin^(2)B

Prove that sin(A+B)sin(A-B)=cos^2B-cos^2A

Prove that: sin(A+2B)sinA-sinBsin(2A+B)sinB=sin(A+B)sin(A-B)

For all values of angle A and B(i)sin(A-B)=sin A cos B-cos A sin B(ii)sin(A+B)=sin A cos B+cos A sin B

Prove that sin(A+B)sin(A-B) = sin^(2)A-sin^(2)B

Prove that sin(A+B)sin(A-B) = sin^(2)A-sin^(2)B

Prove that: sin^(2)=sin^(2)+sin^(2)(A-B)-2s in A cos Bs in(A-B)

Prove that: (sin(A-B))/(sinAsinB)=(sinAcosB-cosAsinB)/(sinAsinB) (sinAcosB)/(sinAsinB)-(cosAsinB)/(sinCsinA) =cotB-cotA-cotC =0 = RHS Hence Proved.

Prove that sin^(2)(A+B)-sin^(2)(A-B)=sin2A*sin2B