Home
Class 11
MATHS
Theorem 1 :If A+B+C=pi then prove that s...

Theorem 1 :If `A+B+C=pi` then prove that `sin2A+sin2B+sin2C=4sinAsinBsinC`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=pi , prove that : sin2A+sin2B+sin2C=4sinA sinB sinC

If A+B+C=0^(@) then prove that sin2A+sin2B+sin2C=-4sin A sin B sin C

If A+B+C=pi then prove that sin2A-sin2B+sin2C=4cos A sin B cos C

If A+B+C=180^(@), then prove that sin2A+sin2B+sin2C=4sin A sin B sin C

In DeltaABC , prove that: sin2A+sin2B+sin2C=4sinAsinBsinC

If A+B+C =pi , prove that sin 2A+sin 2B+sin 2C=4 sin Asin B sin C.

If A+B+C= pi/2 ,prove that: sin2A-sin2B+sin2C=4sinAcosBsinC

If A+B+C=pi, prove that sin2A-sin2B+sin2C=4cosA sin B cosC .

If A+B+C=pi , prove that sin 2A-sin 2B+sin 2C=4cos Asin B cos C.

If A+B+C=pi , prove that sin 2A+sin 2B-sin 2C=4 cos A cos B sin C