Home
Class 11
MATHS
Theorem 3 :If A+B+C=pi then prove that c...

Theorem 3 :If `A+B+C=pi` then prove that `cosA+cosB+cosC=1+4sin(A/2)sin(B/2)sin(C/2)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=pi , prove that : cosA + cosB-cosC=4cos(A/2) cos(B/2) sin(C/2) -1

If A+B+C=pi then prove that cos A+cos B+cos C=1+4sin((A)/(2))*sin((B)/(2))*sin((C)/(2))

If A+B+C = pi , prove that : cosA- cosB - cosC = 1-4sinA//2cosB//2cosC//2 .

If A+B+C=0^(@) then prove that sin2A+sin2B+sin2C=-4sin A sin B sin C

If A+B+C=180^(@), then prove that sin2A+sin2B+sin2C=4sin A sin B sin C

If A+B+C=pi , prove that : sin2A+sin2B+sin2C=4sinA sinB sinC

If A+B+C=pi then prove that sin2A-sin2B+sin2C=4cos A sin B cos C

If cosA + cosB =4sin^(2)(C/2) , then

is A+B+C=pi, prove that sin((A)/(2))sin((B)/(2))sin((C)/(2))>=-1

If A+B+C=pi, then prove that sin(B+2C)+sin(C+2A)+sin(A+2B)=4sin((B-C)/(2))sin((C-A)/(2))sin((A-B)/(2))