Home
Class 11
MATHS
Theorem 4 :If A+B+C=pi then prove that s...

Theorem 4 :If `A+B+C=pi` then prove that `sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=pi , prove that : sinA+sinB+sinC= 4cos( A/2 )cos( B/2) cos(C/2)

If A+B+C=180 , prove that: sinA+sinB+sinC=4cosA/2cosB/2cosC/2

If A+B+C=pi then prove that sin2A-sin2B+sin2C=4cos A sin B cos C

If A+B+C=pi , prove that : cosA + cosB-cosC=4cos(A/2) cos(B/2) sin(C/2) -1

In DeltaABC , prove that: sinA+sinB-sinC=4sinA/2sinB/2cosC/2

If A+B+C=180^@ prove that sin A+sin B+sin C=4 "cos" A/2 "cos" B/2 "cos" C/2

If A+B+C=pi , prove that sin 2A+sin 2B-sin 2C=4 cos A cos B sin C

If A+B+C=pi , prove that : sin2A+sin2B+sin2C=4sinA sinB sinC

If A+B+C=pi , prove that sin 2A-sin 2B+sin 2C=4cos Asin B cos C.

If A+B+C = pi , prove that : cos2A +cos2B +cos2C =-1-4cosAcosBcosC .