Home
Class 12
MATHS
If y=log[x+(1+x^2)^(12)] the value of th...

If `y=log[x+(1+x^2)^(12)]` the value of the expression `((x^2+1)d^2y)/(dx)+(xdy)/(dx)` is-

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(x+1)^((1)/(2))-(x-1)^((1)/(2)) the value of the expression (x^(2)-1)(d^(2)y)/(dx^(2))+(xdy)/(dx-y)/4 is give by

If y=log[x+sqrt(x^(2)+1)] , then prove that (x^(2)+1)(d^(2)y)/(dx^(2))+x(dy)/(dx)=0 .

If y=log((1)/(x)) then value of (dy)/(dx) at x=2 is

If y=log (x + sqrt(x^(2) + 1)) then show that, (x^(2) + 1) (d^(2)y)/(dx^(2)) + x (dy)/(dx)= 0

If y=(sin^-1x)^2 , find the value of (1-x^2)(d^2y)/(dx^2)-xdy/dx+4

The solution of (y - (xdy)/dx)= 3 (1-x^(2)(dy)/(dx)) is

If y=log(x+sqrt(1+x^(2))), then show that (1+x^(2))(d^(2)y)/(dx^(2))+x(dy)/(dx)=0

If y=log (log 2x) ,then x ( d^(2)y)/(dx^(2))+(dy)/(dx) =

If y=log[x+sqrt(x^(2)+1)], prove that (x^(2)+1)(d^(2)y)/(dx^(2))+x(dy)/(dx)=0

If y=log\ [x+sqrt(x^2+1)] , prove that (x^2+1)(d^2\ y)/(dx^2)+x(dy)/(dx)=0