Home
Class 11
MATHS
Conjugate of a complex no and its proper...

Conjugate of a complex no and its properties. If `z, z_1, z_2` are complex no.; then :- (i) `bar(barz)=z` (ii)`z+barz=2Re(z)`(iii)`z-barz=2i Im(z)` (iv)`z=barz hArr z` is purely real (v) `z+barz=0implies` z is purely imaginary (vi)`zbarz=[Re(z)]^2+[Im(z)]^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If z, z_1 and z_2 are complex numbers, prove that (i) arg (barz) = - argz (ii) arg (z_1 z_2) = arg (z_1) + arg (z_2)

If z is a nonzero complex number then (bar(z^-1))=(barz)^-1 .

if z=3 -2i, then verify that (i) z + barz = 2Rez (ii) z - barz = 2ilm z

If (1+i)z=(1-i)barz , then z is equal to

For all z in C, prove that (i) (1)/(2)(z+bar(z))=Re(z), (ii) (1)/(2i)(z-bar(z))=Im(z), (iii) z bar(z)=|z|^(2), (iv) z+bar(z))"is real", (v) (z-bar(z))"is 0 or imaginary".

Solve: z +2barz=ibarz

Find the complex number z if z^2+barz =0

Find the complex number z if zbarz = 2 and z + barz=2