Home
Class 11
MATHS
Modulus of a Complex Number & its proper...

Modulus of a Complex Number & its properties If `z;z_1;z_2inCC` then (i)`|z|=0hArrz=0 i.e. Re(z)=Im(z)=0` (ii)`|z|=|barz|=|-z|` (iii) `-|z|leRe(z)le|z|;-|z|leIm(z)le|z|` (iv) `zbarz=|z|^2` (v)`|z_1z_2|=|z_1||z_2|` (vi)`|(z_1)/(z_2)|=|z_1|/|z_2|; z_2!=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If z_(1) and z_(2)(ne0) are two complex numbers, prove that: (i) |z_(1)z_(2)|=|z_(1)||z_(2)| (ii) |(z_(1))/(z_(2))|=(|z_(1)|)/(|z_(2)|),z_(2)ne0 .

if z_(1)=3+4i and z_(2)=12-5i , verify: (i) |-z_(1)|=|z_(1)| (ii) |z_(1)+z_(2)|lt|z_(1)|+|z_(2)| (iii) |z_(1)z_(2)|=|z_(1)||z_(2)| .

z is a complex number satisfying z^(4)+z^(3)+2z^(2)+z+1=0 , then |z| is equal to

Conjugate of a complex no and its properties. If z, z_1, z_2 are complex no.; then :- (i) bar(barz)=z (ii)z+barz=2Re(z)(iii)z-barz=2i Im(z) (iv)z=barz hArr z is purely real (v) z+barz=0implies z is purely imaginary (vi)zbarz=[Re(z)]^2+[Im(z)]^2

Prove that for nonzero complex numbers |z_1+z_2| |frac(z_1)(|z_1|)+frac(z_2)(|z_2|)|le2(|z_1|+|z_2|) .

If |z_1-1|=Re(z_1),|z_2-1|=Re(z_2) and arg (z_1-z_2)=pi/3, then Im (z_1+z_2) =

For any two complex numbers z_(1) and z_(2), prove that |z_(1)+z_(2)| =|z_(1)|-|z_(2)| and |z_(1)-z_(2)|>=|z_(1)|-|z_(2)|

Show that for any two non zero complex numbers z_1,z_2 (|z_1|+|z_2|)|z_1\|z_1|+z_2\|z_2||le2|z_1+z_2|

If z_1 and z_2 unimodular complex number that satisfy z_1^2 + z_2^2 = 4 then (z_1 + bar(z_1))^2 ( z_2 + bar(z_2))^2 is equal to