Home
Class 11
MATHS
If 1,omega,omega^2 are cube root of unit...

If `1,omega,omega^2` are cube root of unity and n is a positive integer, then `1+omega^n+omega^(2n)` = (3, when n is a multiple of 3), (0, when n is not a multiple of 3):

Promotional Banner

Similar Questions

Explore conceptually related problems

Let omega ne 1 , be a cube root of unity, and f : I rarr C be defined by f(n) = 1 + omega^(n) + omega^(2n) , then range of f is

If 1,omega,omega^2 are the cube roots of unity , then Delta=|(1,omega^n, omega^2n),(omega^n , omega^(2n), 1),(omega^(2n), 1, omega^n)| is equal to :

If 1,omega , omega^2 are the cube roots of unity , then Delta=|(1,omega^n , omega^(2n)),(omega^n , omega^(2n), 1),(omega^(2n), 1, omega^n)| is equal to :

If 1,omega , omega^2 are the cube roots of unity , then Delta=|(1,omega^n , omega^(2n)),(omega^n , omega^(2n), 1),(omega^(2n), 1, omega^n)| is equal to :

If omega(!=1) is a cube root of unity,then the sum of the series S=1+2 omega+3 omega^(2)+....+3n omega^(3n-1) is

If omega be an imaginary cube root of unity, show that 1+omega^n+omega^(2n)=0 , for n=2,4 .