Home
Class 8
MATHS
2^(x)+2^(x)+2^(x)=192+ln xr^(3)i...

2^(x)+2^(x)+2^(x)=192+ln xr^(3)i

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of x, if 2^(x)+2^(x)+2^(x)=192 is

2^(x)+2^(x)+2^(x)=192 then find the value of x

If log 2, log ( 2^(x) - 1) and log ( 2^(x) + 3) are in A.P., then 2, 2^(x) -1 , 2^(x) + 3 are in :

Solve for x : 3^(log x)-2^(log x) =2^(log x+1)-3^(log x-1)

If y=(log x)/(x), show that(d^(2)y)/(dx^(2))=(2log x-3)/(x^(3))

If y=(log x)/(x), show that (d^(2)y)/(dx^(2))=(2log x-3)/(x^(3))

int (2x ^ (3) + 3x ^ (2) + 4x + 5) / (2x + 1) dx equls to: (A) (x ^ (3)) / (2) + (x ^ (2)) / (2) +3 (x) / (2) + (7) / (4) ln (2x + 1) + C (B) 5 (x ^ (3)) / (2) + 6 (x) / (2) + (7) / (4) ln (2x + 1) + C (C) 3 (x ^ (3)) / (2) + 3 (x ^ (2)) / (2) + (7 ) / (4) ln (2x + 1) + C (D) (x ^ (2)) / (2) + 3 (x) / (2) + (7) / (4) ln (2x + 1) + C

Verify that int(2x+3)/(x^(2)+3x)dx = log|x^(2)+3x|+c

Verify that int(2x+3)/(x^(2)+3x)dx = log|x^(2)+3x|+c