Home
Class 11
MATHS
(nC0)^2-(nC1)^2+(nC2)^2+.....+(-1)^n(nCn...

`(nC_0)^2-(nC_1)^2+(nC_2)^2+.....+(-1)^n(nC_n)^2`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If (nC_0)/(2^n)+2.(nC_1)/2^n+3.(nC_2)/2^n+....(n+1)(nC_n)/2^n=16 then the value of 'n' is

(nC_(0))^(2)+(nC_(1))^(2)+(nC_(2))^(2)+......+(nC_(n))^(2)

Statement -1 : The probability of getting a tail most of the times in 10 tosses of a unbiased coin is (1)/(2){1-(10ǃ)/(2^10 5ǃ5ǃ)} . Statement -2: .^2nC_(0)+.^2nC_(1)+.^2nC_(2)+.....^2nC_(n)=2^2n-1,n in N .

If n=5 , then (^nC_(0))^(2)+(^nC_(1))^(2)+(^nC_(2))^(2)+....+(^nC_(5))^(2) is equal to

The expression nC_(0)+4*nC_(1)+4^(2)nC_(2)+.....4^(n^(n))C_(n), equals

nC_(0)-(1)/(2)(^(^^)nC_(1))+(1)/(3)(^(^^)nC_(2))-....+(- 1)^(n)(nC_(n))/(n+1)=

If S_n=^nC_0.^nC_1+^nC_1.^nC_2+.....+^nC_(n-1).^nC_n and if S_(n+1)/S_n=15/4 , then the sum of all possible values of n is (A) 2 (B) 4 (C) 6 (D) 8

Statement - 1: The value of ((20),(0))((20),(1))-((20),(1))((20),(9))+((20),(2))((20),(8))-((20),(3))((20),(7))+...+((20),(10))((20),(0))=0, where ((n),(r))=^nC_r Statement - 2: .^nC_0-^nC_1+^nC_2-^nC_3+...+(-1)^n .^nC_n=0.

Prove,by induction,that (nC_(0))/(x)-(nC_(1))/(x+1)+(nC_(2))/(x+2)-.........+(-1)^(n)*(nC_(n))/(x+n)=(n!)/(x(x+1)(x+2)......(x+n)),x in

Prove that ""^nC_0-2*""^nC_1+3*""^nC_2-...+(-1)""^n(n+1)""^nC_n=0