Home
Class 11
PHYSICS
If vec A+vec B=vec C and the angle betwe...

If `vec A+vec B=vec C` and the angle between `vec A` and `vec B` is `120^(@)`, then the magnitude of `vec C`

A

must be equal to `|vecA-vecB|`

B

must be less than `|vecA-vecB|`

C

must be greater than `|vecA-vecB|`

D

must be equal to `|vecA-vecB|`

Text Solution

AI Generated Solution

The correct Answer is:
To find the magnitude of vector \( \vec{C} \) given that \( \vec{A} + \vec{B} = \vec{C} \) and the angle between \( \vec{A} \) and \( \vec{B} \) is \( 120^\circ \), we can use the formula for the magnitude of the resultant of two vectors. ### Step-by-Step Solution: 1. **Identify the Given Information**: - We have two vectors \( \vec{A} \) and \( \vec{B} \). - The angle \( \theta \) between \( \vec{A} \) and \( \vec{B} \) is \( 120^\circ \). 2. **Use the Formula for the Magnitude of the Resultant**: - The magnitude of the resultant vector \( \vec{C} \) can be calculated using the formula: \[ |\vec{C}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2 + 2 |\vec{A}| |\vec{B}| \cos(\theta)} \] - Here, \( |\vec{A}| \) is the magnitude of vector \( \vec{A} \), \( |\vec{B}| \) is the magnitude of vector \( \vec{B} \), and \( \theta = 120^\circ \). 3. **Calculate \( \cos(120^\circ) \)**: - The cosine of \( 120^\circ \) is: \[ \cos(120^\circ) = -\frac{1}{2} \] 4. **Substitute the Values into the Formula**: - Now substituting \( \cos(120^\circ) \) into the formula: \[ |\vec{C}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2 + 2 |\vec{A}| |\vec{B}| \left(-\frac{1}{2}\right)} \] - This simplifies to: \[ |\vec{C}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2 - |\vec{A}| |\vec{B}|} \] 5. **Final Expression**: - Thus, the magnitude of vector \( \vec{C} \) is given by: \[ |\vec{C}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2 - |\vec{A}| |\vec{B}|} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MOTION IN A PLANE

    NARAYNA|Exercise Level-I(C.W)|43 Videos
  • MOTION IN A PLANE

    NARAYNA|Exercise Level-II(C.W)|45 Videos
  • MOTION IN A PLANE

    NARAYNA|Exercise Level-II(H.W)|31 Videos
  • MECHANICAL PROPERTIES OF SOLIDS

    NARAYNA|Exercise LEVEL-II (H.W)|24 Videos
  • MOTION IN A STRAIGHT LINE

    NARAYNA|Exercise Level 2 H.W|29 Videos

Similar Questions

Explore conceptually related problems

If vec a,vec b,vec c are unit vectors such that vec a*vec b=0=vec a*vec c and the angle between vec b and vec c is pi/3, then the value of |vec a xxvec b-vec a xxvec c| is 1/2 b.1 c.2 d.none of these

.Vectors vec A , vec B and vec c are shown in figure.Find angle between (i) vec A and vec B . (ii) vec A and vec C . , (iii) vec B and vec C

Knowledge Check

  • If vec(A) + vec(B) = vec(C ) and A + B = C , then the angle between vec(A) and vec(B) is :

    A
    0
    B
    `(pi)/(4)`
    C
    `(pi)/(2)`
    D
    `pi`
  • If vec(a).vec(b) and vec(c ) are unit vectors such that vec(a) is perpendicular to the plane of vec(b) , vec(c ) and the angle between vec(b) and vec(c ) is (pi)/(3) . Then what is |vec(a) +vec(b)+vec(c )| ?

    A
    A) 1
    B
    B) 2
    C
    C) 3
    D
    D) 4
  • Assertion: If |vec(A)+vec(B)|=|vec(A)-vec(B)| , then angle between vec(A) and vec(B) is 90^(@) Reason: vec(A)+vec(B)= vec(B)+vec(A)

    A
    If both assertion and reason are true and reason is the correct explanation of assertion.
    B
    If both assertion and reason are true but reason is not the correct explanation of assertion
    C
    If assertion is true but reason is false.
    D
    If both aseertion and reason are false.
  • Similar Questions

    Explore conceptually related problems

    Given vec A+ vec B+ vec + vec D=0 , can the magnitude of vec A + vec B + vec C be equal to the magnitude of vec D Explain.

    Two vectors vec A and vec B have equal magnitudes.The magnitude of (vec A+vec B) is 'n' times the magnitude of (vec A-vec B).The angle between vec A and vec B is:

    Let vec a,vec b,vec c are the three vectors such that |vec a|=|vec b|=|vec c|=2 and angle between vec a and vec b is (pi)/(3),vec b and vec c and (pi)/(3) and vec a and vec c(pi)/(3). If vec a,vec b and vec c are sides of parallelogram

    If vec A = vec B+ vec C and the values of vec A, vec B and vec C are 13, 12 and 5 respectively, then the angle between vec A and vec C will be

    If vec(a) , vec(b), vec(c) are unit vectors such that vec(a) is perpendicular to the plane of vec(b), vec(c) , and the angle between vec(b) and vec(c) is (pi)/(3) Then, what is |vec(a)+vec(b)+vec(c)| ?