Home
Class 12
MATHS
Determinant form of (x-y)(y-z)(z-x)(xy+y...

Determinant form of `(x-y)(y-z)(z-x)(xy+yz+zx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify- (x-y)/(xy)+(y-z)/(yz)+(z-x)/(zx)

Using properties of determinants, prove that : |{:((x+y)^(2),zx,xy),(zx,(z+y)^(2),xy),(zy,xy,(z+x)^(2)):}|=2xyz(x+y+z)^(3) .

xquad x ^ (2), y2yquad y ^ (2), 2xz, z ^ (2), xy] | = (xy) (yz) (zx) (xy + yz + 2x)

[[x,x^(2),yzy,y^(2),zxz,z^(2),xy]]=(x-y)(y-z)(z-x)(xy+yz+zx)

By using properties of determinants.Show that: det[[x,x^(2),yzy,y^(2),zxz,z^(2),xy]]=(x-y)(y-z)(z-x)(xy+yz+zx)

simplify- (((x+y)^2-xy)/((y-z)(z-x)))+(((y+z)^2-yz)/((z-x)(x-y)))+(((z+x)^2-zx)/((x-y)(y-z)))

If x + y + z = 0 , then the value of (x^2)/(yz) + (y^2)/(zx) + (z^2)/(xy) is:

Simplify- (x-y-z)(x^2+y^2+z^2+xy-yz+zx)

Find the product. (x+y-z)(x^2+y^2+z^2-xy+yz+zx)