Home
Class 12
MATHS
If A is a non singular square matrix; th...

If A is a non singular square matrix; then `adj(adjA) = |A|^(n-2) A`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A is a non singular square matrix 3 then |adj(A^3)| equals (A) |A|^8 (B) |A|^6 (C) |A|^9 (D) |A|^12

If A is a non-singular matrix, then A (adj.A)=

If A is a non singular square matrix then |adj.A| is equal to (A) |A| (B) |A|^(n-2) (C) |A|^(n-1) (D) |A|^n

If A is an invertible square matrix; then adjA^(T)=(adjA)^(T)

If A is a non-singular matrix of order n, then A(adj A)=

Let A be a non-singular square matrix of order n.Then; |adjA|=|A|^(n-1)

If A is a square matrix, then adj(A')-(adjA)'=

If A is a singular matrix, then A (adj A) is a

If A is a 2xx2 non singular matrix, then adj(adj A) is equal to :