Home
Class 12
MATHS
If A is a non singular matrix then |A^(-...

If `A` is a non singular matrix then `|A^(-1)|=|A|^(-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If is a non-singular matrix, then det (A^(1))=

If A is a non-singular matrix, then A (adj.A)=

If A is a non singular matrix; then prove that |A^(-1)|=|A|^(-1)

If A is a 3xx3 non-singular matrix,then |A^(-1)adj(A)| is

If A is a 3xx3 non-singular matrix with det (A^(-1)) =( detA)^(k) , then the value of k is :

If A is a non-singular matrix such that AA^(T)=A^(T)A and B=A^(-1)A^(T), the matrix B is a.involuntary b.orthogonal c.idempotent d. none of these

If A is a non singular square matrix,then adj(adjA)=|A|^(n-2)A

If A is a non-singular matrix,prove that (adjA)^(-1)=(adjA^(-1))

If A is a non-singular matrix,prove that (adjA)^(-1)=(adjA^(-1))