Home
Class 12
MATHS
If y^(2)=ax^(2)+2bx+c, then y^(3)(d^(2)y...

If `y^(2)=ax^(2)+2bx+c`, then `y^(3)(d^(2)y)/(dx^(2))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

"If "y^(2)=ax^(2)+bx+c," then "y^(3)(d^(2)y)/(dx^(2)) is

If y^(2)=ax^(2)+bx+c, then y^(3)(d^(2)y)/(dx^(2)) is a constant (b) a function of x only (c) a function of y only (d) a function of x and y

If y^(2)=ax^(2)+bx+c, then y^(3)(d^(2)y)/(dx^(2)) is (a)a constant ( b) a function of x only (c)a function of y only (d)a function of xandy

y^(2) = ax^(2) +bx + c then y^(3) (d^(2)y)/(dx^(2)) is a …….. function

If y^(2)=ax^(2)+2bx+c," then "y^(3)y_(2)=

If y^(2)=ax^(2)+2bx+c," then "(ax+b)^(3)(d^(2)x)/(dy^(2))=

If y^(2) = ax^(2) + b , " then " (d^(2)y)/( dx^(2))

If y^(2) = ax^(2) + b , " then " (d^(2)y)/( dx^(2))

If y^2 =ax^2 + bx +c , then y^3(d^2y)/(dx^2) is

If y=ax^(n+1)+bx^(-n), then x^(2)(d^(2)y)/(dx^(2))=n(n-1)y(b)n(n+1)y(c)ny(d)n^(2)y