Home
Class 12
MATHS
Diffrentiate e^(2x) and e^sinx...

Diffrentiate ` e^(2x)` and `e^sinx`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Defferentiate y=e^(sinx)

Differentiate wrt x : (3e^(x)sinx+a^(x)*logx)

Differentiate (e^(2x)+e^(-2x))/(e^(2x)-e^(-2x)) with respect to 'x'

Differentiate (e^(2x)+e^(-2x))/(e^(2x)-e^(-2x)) with respect to x:

Differentiate wrt x : x^(2)*e^(x)*sinx

Differentiate : (i) (e^(x))/(x) , (ii) ((2x+3)/(x^(2) - 5)) , (iii) (e^(x))/((1+sinx))

(e^(x) sinx)/(secx)

cos^(3) x e^(log sinx)

The solution of the equation e^(sinx) -e^(-sinx)-4 = 0 is :