Home
Class 12
MATHS
By substitution: Theorem: If int f(x) dx...

By substitution: Theorem: If `int f(x) dx = phi(x)` then `int f(ax+b) dx = 1/a phi(ax + b)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int 1/(ax+b) dx

Theorem: (d)/(dx)(int f(x)dx=f(x)

By substitution: Theorem: If int(1)/(ax+b)dx=(1)/(a)ln(ax+b)

int sqrt(ax+b) dx.

By substitution: Theorem: If int(ax+b)^(n)dx=((ax+b)^(n+1))/(a)(n+1)

By substitution: Theorem: int sin(ax+b)dx=-(1)/(a)cos(ax+b)+c

int e^(x){f(x)-f'(x)}dx=phi(x), then int e^(x)f(x)dx is

int x(ax+b)^(1/2)dx

int _(a) ^(b) f (x) dx =

If phi(x)=f(x)+xf'(x) then int phi(x)dx is equal to