Home
Class 12
MATHS
Integration of sin^m x cos^n x (m+n) is ...

Integration of `sin^m x cos^n x` (m+n) is negative integer

Promotional Banner

Similar Questions

Explore conceptually related problems

Integration of sin^(m)x cos^(n)xmn are integer

Integral of sin^(m)x or cos^(m)x(m<=4)

Integrate: int sin mx cos nxdx,m!=n

Integrate: int cos mx cos nxdx,m!=n

Integrate y=(sin x+cos x)/(sin x-cos x)

If x be any non zero integer and m, n be negative integers. Then x^(m)xxx^(n) is equal to

If (241)/(400)=(241)/(2^(m)xx5^(n)) then then find the value of m + n, where m and n are non-negative integers.

Integrate {(cos x-sin x)/(cos x+sin x)}

Integrate [(cos x+sin x)/(cos x-sin x)]

The value of the integral int_(0)^(a//2) sin 2n x cot x dx, where n is a positive integer, is