Home
Class 12
MATHS
int 1/(x^2 - a^2) dx = 1/( 2a) log ((x-a...

`int 1/(x^2 - a^2) dx = 1/( 2a) log ((x-a) /( x+a)) + c`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : int 1/(a^(2)-x^(2)) dx = 1/(2a) log |(a+x)/(a-x)|+c.

int 1/(x(log x)^2)dx

int(1)/(a^(2))-x^(2)dx=(1)/(2)a log(a+(x)/(a)-x)+c

int_(1)^(2)x log x dx =

int(1)/(x(log x)^(2))dx

int(1)/(x(2+log x^(2)))dx

(i) int x^2 log x dx (ii) int (x^2+1) log x dx

int (1)/(x ^(3)) [log x ^(x) ] ^(2) dx = p (log x ) ^(3) + c Then p = .............

If int1/((x^(2)-1))log((x-1)/(x+1))dx=A[log((x-1)/(x+1))]^(2)+c , then A =