Home
Class 12
MATHS
int 1/ sqrt ( x^2 - a^2) = log ( x+ sqrt...

`int 1/ sqrt ( x^2 - a^2) = log ( x+ sqrt( x^2 - a^2)) + c`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

int(1)/(sqrt(a^(2)+x^(2)))dx=log(x+sqrt(x^(2)+a^(2))+c

int log(x+sqrt(x^(2)+a^(2)))dx

" (1) "int log(x+sqrt(x^(2)-a^(2)))dx

int_(-a)^(a) log (x+ sqrt(x^(2) + 1 ) ) dx

int sqrt(x^(2)-a^(2))=(1)/(2)x sqrt(x^(2)-a^(2))-(1)/(2)a^(2)log(x+sqrt(x^(2)-a^(2))+c

int sqrt(x)(log x)^(2)dx

prove that : int sqrt(x^2+a^2) dx = x/2sqrt(x^2+a^2)+a^2/2log|x+sqrt(x^2+a^2)| +c

"If "int (1)/(sqrt(4x^(2)-5))dx=alpha log|x+sqrt(x^(2)-beta)|,"then "alpha+2beta is

intdx/(sqrt(1+x^2)sqrt(log(x+sqrt(1+x^2))))

int_-1^1 log(x+sqrt(x^2+1))dx