Home
Class 12
MATHS
int sqrt(a^2 + x^2) = 1/2 x sqrt (a^2 + ...

`int sqrt(a^2 + x^2) = 1/2 x sqrt (a^2 + x^2) + 1/2 a^2 log ( x + sqrt( a^2 + x^2)) + c`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

int sqrt(x^(2)-a^(2))=(1)/(2)x sqrt(x^(2)-a^(2))-(1)/(2)a^(2)log(x+sqrt(x^(2)-a^(2))+c

int sqrt(a^(2)-x^(2))dx=(1)/(2)x sqrt(a^(2)-x^(2))+(1)/(2)a^(2)sin^(-1)((x)/(a))+c

prove that : int sqrt(x^2+a^2) dx = x/2sqrt(x^2+a^2)+a^2/2log|x+sqrt(x^2+a^2)| +c

int(1)/(sqrt(a^(2)+x^(2)))dx=log(x+sqrt(x^(2)+a^(2))+c

" (1) "int log(x+sqrt(x^(2)-a^(2)))dx

int_-1^1 log(x+sqrt(x^2+1))dx

Choose the correct answer int sqrt(1+x^(2))dx is equal to (A)(x)/(2)sqrt(1+x^(2))+(1)/(2)log|(x+sqrt(x+x^(2)))|+C (B) (2)/(3)(1+x^(2))^((3)/(2))+C(C)(2)/(3)x(1+x^(2))^((3)/(2))+C(D)^(2)sqrt(1+x^(2))+(1)/(2)x^(2)log|x+sqrt(1+x^(2))|+C

int x((ln(x+sqrt(1+x^(2))))/(sqrt(1+x^(2)))dx

int(1)/(sqrt(x^(2)-a^(2)))=log(x+sqrt(x^(2)-a^(2))+c