Home
Class 12
MATHS
int sqrt(x^2 - a^2) = 1/2 x sqrt (x^2 - ...

`int sqrt(x^2 - a^2) = 1/2 x sqrt (x^2 - a^2) - 1/2 a^2 log ( x + sqrt( x^2 - a^2)) + c`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

prove that : int sqrt(x^2+a^2) dx = x/2sqrt(x^2+a^2)+a^2/2log|x+sqrt(x^2+a^2)| +c

int sqrt(a^(2)+x^(2))=(1)/(2)x sqrt(a^(2)+x^(2))+(1)/(2)a^(2)log(x+sqrt(a^(2)+x^(2))+c

" (1) "int log(x+sqrt(x^(2)-a^(2)))dx

int(1)/(sqrt(x^(2)-a^(2)))=log(x+sqrt(x^(2)-a^(2)))

int(1)/(sqrt(x^(2)-a^(2)))=log(x+sqrt(x^(2)-a^(2))+c

int_-1^1 log(x+sqrt(x^2+1))dx

int(1)/(sqrt(a^(2)+x^(2)))dx=log(x+sqrt(x^(2)+a^(2))+c

int sqrt(a^(2)-x^(2))dx=(1)/(2)x sqrt(a^(2)-x^(2))+(1)/(2)a^(2)sin^(-1)((x)/(a))+c

int(2+sqrt(x))/((x+sqrt(x)+1)^(2))dx