Home
Class 12
MATHS
Property 2: If the limits of a definite ...

Property 2: If the limits of a definite integral are interchanged then its value changes. `int_a ^b f(x) dx = - int_b ^a f(x) dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that int_(a)^(b) f(x) dx= int_(a)^(b) f(a+b-x) dx

int_a^b[d/dx(f(x))]dx

int _(a) ^(b) f (x) dx = int _(a) ^(b) f (a + b - x) dx

Evaluate the following integrals: int_(a)^(b)f(x)dx +int_(b)^(a)f(x)dx

Prove that the equality int_(a)^(b) f(x) dx = int_(a)^(b) f(a + b - x) dx

The value of int_(2)^(3)f(5-x)dx-int_(2)^(3)f(x)dx is

By using the properties of definite integrals, evaluate the integrals int_(0)^(2)x sqrt(2-x)dx

Prove that int_(a)^(b)f(x)dx=(b-a)int_(0)^(1)f((b-a)x+a)dx

If f is an integrable function, show that int_(-a)^af(x^2)dx=2int_0^af(x^2)dx