Answer
Step by step text solution for Property 6: If f(x) is a continuous function defined on [0, 2a] then int_0 ^(2a)f(x)dx = int_0 ^a f(x) dx + int_0 ^a f(2a - x) dx by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.
|
Similar Questions
Explore conceptually related problems
Knowledge Check
Similar Questions
Explore conceptually related problems
Recommended Questions
- Property 6: If f(x) is a continuous function defined on [0, 2a] then ...
05:42
|
Playing Now - If f is an integrable function such that f(2a-x)=f(x), then prove that...
01:45
|
Play - If f(2a-x)=-f(x), prove that int0^(2a)f(x)dx=0
02:11
|
Play - If f(x) is a continuous function defined on [0,\ 2a]dot\ Then prove t...
04:34
|
Play - int0^(2a)f(x)dx is equal to 2int0^af(x)dx b. 0 c. int0^af(x)dx+int0^...
04:41
|
Play - f(2a-x)=f(x) হলে, int0^(2a)f(x)dx=
01:36
|
Play - f(2a-x)=-f(x) হলে দেখাও যে, int0^(2a)f(x)dx=0।
03:27
|
Play - ধরা যাক f(x)=max{x+|x|,x-[x]}, যেখানে [x] গরিষ্ঠ অখণ্ড সংখ্যা যার মান...
05:26
|
Play - int0^(2a)(f(x)dx)/(f(x)+f(2a-x)) সমাকলের মান হয়-
02:44
|
Play