Home
Class 12
MATHS
sin^(-1)((1)/(sqrt(5)))+cot^(-1)(3)=...

sin^(-1)((1)/(sqrt(5)))+cot^(-1)(3)=

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sin^(-1)((3)/(sqrt(73)))+cos^(-1)((11)/(sqrt(146)))+cot^(-1)sqrt(3) is k pi then (1)/(k)

Prove that tan^(-1).(1)/(sqrt2) + sin^(-1).(1)/(sqrt5) - cos^(-1).(1)/(sqrt10) = -pi + cot^(-1) ((1 + sqrt2)/(1 - sqrt2))

Prove that tan^(-1).(1)/(sqrt2) + sin^(-1).(1)/(sqrt5) - cos^(-1).(1)/(sqrt10) = -pi + cot^(-1) ((1 + sqrt2)/(1 - sqrt2))

Prove that tan^(-1).(1)/(sqrt2) + sin^(-1).(1)/(sqrt5) - cos^(-1).(1)/(sqrt10) = -pi + cot^(-1) ((1 + sqrt2)/(1 - sqrt2))

Prove that tan^(-1).(1)/(sqrt2) + sin^(-1).(1)/(sqrt5) - cos^(-1).(1)/(sqrt10) = -pi + cot^(-1) ((1 + sqrt2)/(1 - sqrt2))

Prove: sin^(-1)(1/sqrt5)+cot^(-1)3=pi/4

Sum of series of ^(cot^(-1)(5)/(sqrt(3))+cot^(-1)(9)/(sqrt(3))+cot^(-1)(15)/(sqrt(3))+cot^(-1)(23)/(sqrt(3))+......oo) is equal to

Prove that cos(sin^(-1)((3)/(5)) +cot^(-1)((3)/(2))) =(6)/(5sqrt(13))

The value of sin ^(-1) (-(1)/(sqrt2)) + cos ^(-1) (-(1)/(2)) - tan ^(-1) (-sqrt3) + cot ^(-1) (-(1)/(sqrt3)) is

The value of sin ^(-1) (-(1)/(sqrt2)) + cos ^(-1) (-(1)/(2)) - tan ^(-1) (-sqrt3) + cot ^(-1) (-(1)/(sqrt3)) is