Home
Class 12
MATHS
int0 ^(pi/2) log sinx dx = int0 ^(pi/2) ...

`int_0 ^(pi/2) log sinx dx = int_0 ^(pi/2) log cosx dx = 1/2 (pi) log(1/2)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi) x log sinx\ dx

Prove that: int_(0)^(pi//2) log (sin x) dx =int_(0)^(pi//2) log (cos x) dx =(-pi)/(2) log 2

int_(0)^(pi)log sin^(2)x dx=

int_(0)^(pi//2) log (cotx ) dx=

Prove that int_(0)^(pi//2)log (sinx)dx=int_(0)^(pi//2) log (cosx)dx=-(pi)/(2) log 2 .

int_0^(pi//2)log(tanx)dx

Prove that: int_0^(pi//2)logsinx\ dx=\ int_0^(pi//2)logcosx\ dx=-pi/2log2

int_(0)^(pi//2)log (sec x) dx=

int_(0)^(pi//2) log (tan x ) dx=