Home
Class 12
MATHS
Simplify [[veca-vecb, vecb-vecc, vecc-ve...

Simplify `[[veca-vecb, vecb-vecc, vecc-veca]]`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of [(veca-vecb, vecb-vecc, vecc-veca)] , where |veca|=1, |vecb|=5, |vecc|=3 , is

For any three vectors veca, vecb, vecc the value of [(veca-vecb, vecb-vecc, vecc-veca)] , is

Let veca,vecb, vecc be any three vectors, Statement 1: [(veca+vecb, vecb+vecc,vecc+veca)]=2[(veca, vecb, vecc)] Statement 2: [(vecaxxvecb, vecbxxvecc, veccxxveca)]=[(veca, vecb, vecc)]^(2)

If veca, vecb, vecc are non-null non coplanar vectors, then [(veca-2vecb+vecc, vecb-2vecc+veca, vecc-2veca+vecb)]=

For any three vectors veca, vecb, vecc the value of [(veca+vecb,vecb+vecc,vecc+veca)] is

For three vectors veca, vecb and vecc , If |veca|=2, |vecb|=1, vecaxxvecb=vecc and vecbxxvecc=veca , then the value of [(veca+vecb,vecb+vecc,vecc+veca)] is equal to

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

For any these vectors veca,vecb, vecc the expression (veca-vecb).{(vecb-vecc)xx(vecc-veca)} equals

If [veca xx vecb vecb xx vecc vecc xx veca]=lambda[veca vecb vecc^(2)] , then lambda is equal to