Home
Class 12
MATHS
Proving coplanarity of four points...

Proving coplanarity of four points

Promotional Banner

Similar Questions

Explore conceptually related problems

Coplanarity of points

Coplanar points are the points that are in the same plane.Thus,Can 150 points be coplanar? Can 3 points be non-coplanar?

Prove that the four points (4hati + 5 hatj+hatk), - (hatj +hatk),(3hati+9hatj+4hatk) and 4 (-hati+hatj+hatk) are coplanar.

Prove that the four points 4veci+5veci+veck, -(vecj+veck),3veci+9vecj+4veck and 4(-veci+vecj+veck) are coplanar

Prove that the four points 2veca+3vecb-vecc, veca-2vecb+3vecc,3veca+4vecb-2vecc and veca-6vecb+6vecc are coplanar where veca,vecb,vecc are non-coplanar vectors

If bar(a),bar(b),bar(c) are non-coplanar vectors.Prove that the four points -bar(a)+4bar(b)-3bar(c) , 3bar(a)+2bar(b)-5bar(c) , -3bar(a)+8bar(b)-5bar(c) , -3bar(a)+2bar(b)+bar(c) are coplanar.

Prove that the four points having position vectors are coplanar: 2hat i-hat j+hat k,hat i-3hat j-5hat k and 3hat i-4hat j-4hat k

Prove that the four points having position vectors are coplanar: hat i+hat j+hat k,2hat i+3hat j-hat k and -hat i-2hat j+2hat k

Prove that the four points having position vectors are non-coplanar; 3hat i+hat j-hat k,2hat i-hat j+7hat k and 7hat i-hat j+23hat k