Home
Class 12
MATHS
Consider the region R in the Argand plan...

Consider the region `R` in the Argand plane described by the complex number. `Z` satisfying the inequalities `|Z-2| le |Z-4|`, `|Z-3| le |Z+3|`, `|Z-i| le |Z-3i|`, `|Z+i| le |Z+3i|`
Answer the followin questions :
The maximum value of `|Z|` for any `Z` in `R` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the region R in the Argand plane described by the complex number. Z satisfying the inequalities |Z-2| le |Z-4| , |Z-3| le |Z+3| , |Z-i| le |Z-3i| , |Z+i| le |Z+3i| Answer the followin questions : Minimum of |Z_(1)-Z_(2)| given that Z_(1) , Z_(2) are any two complex numbers lying in the region R is

Consider the region R in the Argand plane described by the complex number. Z satisfying the inequalities |Z-2| le |Z-4| , |Z-3| le |Z+3| , |Z-i| le |Z-3i| , |Z+i| le |Z+3i| Answer the followin questions : Minimum of |Z_(1)-Z_(2)| given that Z_(1) , Z_(2) are any two complex numbers lying in the region R is

Consider the region R in the Argand plane described by the complex number. Z satisfying the inequalities |Z-2| le |Z-4| , |Z-3| le |Z+3| , |Z-i| le |Z-3i| , |Z+i| le |Z+3i| Answer the followin questions : Minimum of |Z_(1)-Z_(2)| given that Z_(1) , Z_(2) are any two complex numbers lying in the region R is

The region of the argand plane defined by |z-i| + |z +i| le 4 is

IF |z+4|le3, then the maximum value of |z+1| is

If |z+ 4| le 3 then the maximum value of |z + 1|

If |z + 3| le 3 then find minimum and maximum values of |z|

Locate the region in the argand plane for z satisfying |z+i|=|z-2|.