Home
Class 8
MATHS
lim(h rarr0)(log(x+h)-log x)/(h)=(1)/(x)...

lim_(h rarr0)(log(x+h)-log x)/(h)=(1)/(x)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: lim_(h rarr 0) (log(x+h)-logx)/(h)=(1)/(x)

lim_(x rarr0)(log(a+x)-log(a-x))/(x)

lim_(x rarr0)x log x .

lim_(h rarr0)(log(1+2h)-2log(1+h))/(h^(2))=

lim_(x rarr0)((log(4-x)-log(4+x))/(x))

lim_(h rarr0)(sin(x+h)-sinx)/(h)

lim_(x rarr0)[(log(a+x)-log a)/(x)]=...

lim_(x rarr0)[(log(1+x))/(x)]^((1)/(x)) equals-

lim_(X rarr0)log|(log(1+x))/(x)|

lim_(x rarr0)(log(1+x))/(x)=1