Home
Class 11
MATHS
An equation of the form (a-f(x))^(1/n) +...

An equation of the form `(a-f(x))^(1/n) +(b+f(x))^(1/n) = g(x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

An inequation of the form f^((1)/(2)n)(x)

An inequation of the form f^((1)/(2)n)(x)

An equation of the form (f(x))^((1)/(2n))=g(x) equivalent to the system g(x)>=0;f(x)=g^(2n)(x)

An equation of the form f^(2n)(x)=g^(2n)(x) is equivalent to f(x)=g(x)

If f(x)=(a-x^n)^(1/n) then find f(f(x))

If g is the inversefunction of f and f’ (x ) = (1)/( 1 + x^(n)) then g'(x) is equal to

The function f(x) .defined as f(x)=lim_(n rarr oo)(f(x)+x^(2n)g(x))/(1+x^(2n)) shall be continuous every where,if

If f(alpha)=f(beta) and n in N , then the value of int_alpha^beta (g(f(x)))^n g\'(f(x))*f\'(x)dx= (A) 1 (B) 0 (C) (beta^(n+1)-alpha^(n+1))/(n+1) (D) none of these

Evaluate int[f(x)g^(n)(x)-f^(n)(x)g(x)]dx

f(x)=(x+1)(x+2)(x+2^(2))+...+(x+2^(n-1)) and g(x)=lim_(n rarr oo)((f(x+(1)/(n)))/(f(x)))^(n) if f(x)!=0=0 if f(x)=0 then g(0)=