Home
Class 11
MATHS
arg(barz)=-arg(z)...

`arg(barz)=-arg(z)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If z, z_1 and z_2 are complex numbers, prove that (i) arg (barz) = - argz (ii) arg (z_1 z_2) = arg (z_1) + arg (z_2)

arg(bar(z))+arg(-z)={{:(pi",","if arg (z) "lt 0),(-pi",", "if arg (z) "gt 0):},"where" -pi lt arg(z) le pi . If arg(z) gt 0 , then arg (-z)-arg(z) is equal to

arg(bar(z))+arg(-z)={{:(pi",","if arg (z) "lt 0),(-pi",", "if arg (z) "gt 0):},"where" -pi lt arg(z) le pi . If arga(4z_(1))-arg(5z_(2))=pi, " then " abs(z_(1)/z_(2)) is equal to

Let z be a unimodular complex number. Statement-1:arg (z^(2)+barz)="arg"(z) Statement-2:barz= cos("arg"z)-isin("arg"z)

arg((z)/(bar(z)))=arg(z)-arg(bar(z))

If arg(z) lt 0, then find arg(-z) -arg(z) .

If |z|=1 and z ne +-1 , then one of the possible value of arg(z)-arg(z+1)-arg(z-1) , is