Home
Class 12
MATHS
If both f(x) and g(x) are non-differenti...

If both `f(x)` and `g(x)` are non-differentiable at `x=a` then `f(x)+g(x)` may be differentiable at `x=a`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) and g(x) are differentiable function then show that f(x)+-g(x) are also differentiable such that d(f(x)+-g(x))/(dx)=d(f(x))/(dx)+-d(g(x))/(dx)

If f(x) and g(x) are two differentiable functions, show that f(x)g(x) is also differentiable such that (d)/(dx)[f(x)g(x)]=f(x)(d)/(dx){g(x)}+g(x)(d)/(dx){f(x)}

f(x) is differentiable function and (f(x).g(x)) is differentiable at x=a. Then a.g(x) must be differentiable at x=a b.if g(x) is discontinuous,then f(a)=0 c.if f(a)!=0 then g(x) must be differentiable d.none of these

If f(x) and g(x) a re differentiate functions, then show that f(x)+-g(x) are also differentiable such that (d)/(dx){f(x)+-g(x)}=(d)/(dx){f(x)}+-(d)/(dx){g(x)}

Let f(x)=|x| and g(x)=|x^(3)|, then f(x) and g(x) both are continuous at x=0 (b) f(x) and g(x) both are differentiable at x=0 (c) f(x) is differentiable but g(x) is not differentiable at x=0 (d) f(x) and g(x) both are not differentiable at x=0

Let f(x)=|x| and g(x)=|x^3|, then (a)f(x)a n dg(x) both are continuous at x=0 (b)f(x)a n dg(x) both are differentiable at x=0 (c)f(x) is differentiable but g(x) is not differentiable at x=0 (d)f(x) and g(x) both are not differentiable at x=0

Statement-1: If f and g are differentiable at x=c, then min (f,g) is differentiable at x=c. Statement-2: min (f,g) is differentiable at x=c if f(c ) ne g(c )

Let f(x)={{:(-2",",-3lexle0),(x-2",",0ltxle3):}andg(x)=f(|x|)+|f(x)| Which of the following statement is correct ? g(x) is differentiable at x=0 g(x) is differentiable at x=2

If f(x) and g(f) are two differentiable functions and g(x)!=0, then show trht (f(x))/(g(x)) is also differentiable (d)/(dx){(f(x))/(g(x))}=(g(x)(d)/(pi){f(x)}-g(x)(d)/(x){g(x)})/([g(x)]^(2))