Home
Class 11
MATHS
[" 7.The determinant "Delta=|[a^(2)+x^(2...

[" 7.The determinant "Delta=|[a^(2)+x^(2),ab,ac],[ab,b^(2)+x^(2),bc],[ac,bc,c^(2)+x^(2)]|" is divisibleby "],[[" (a) "x^(5)," (b) "x^(4)],[" (c) "x^(4)+1," (d) "x^(4)-1]]

Promotional Banner

Similar Questions

Explore conceptually related problems

The determinant Delta=|{:(a^(2)+x^(2),ab,ac),(ab,b^(2)+x^(2),bc),(ac,bc,c^(2)+x^(2)):}| is divisible by

The determinant Delta=|{:(a^(2)+x^(2),ab,ac),(ab,b^(2)+x^(2),bc),(ac,bc,c^(2)+x^(2)):}| is divisible by

show that |[a^2+x^2,ab ,ac],[ab,b^2+x^2,bc],[ac,bc,c^2+x^2]| is divisible x^4

The determinant Delta=|{:(,a^(2)(1+x),ab,ac),(,ab,b^(2)(1+x),(bc)),(,ac,bc,c^(2)(1+x)):}| is divisible by

The determinant Delta=|{:(,a^(2)(1+x),ab,ac),(,ab,b^(2)(1+x),(bc)),(,ac,bc,c^(2)(1+x)):}| is divisible by

Show that |(a^(2)+x^(2),ab,ac),(ab,b^(2)+x^(2),bc),(ac,bc,c^(2)+x^(2))| is divisible by x^(2) .

Show that |(a^(2)+x^(2),ab,ac),(ab,b^(2)+x^(2),bc),(ac,bc,c^(2)+x^(2))| is divisible by x^(4)

the determinant Delta=|[a^2+x, ab, ac] , [ab, b^2+x, bc] , [ac, bc, c^2+x]| is divisible by

the determinant Delta=|[a^2+x, ab, ac] , [ab, b^2+x, bc] , [ac, bc, c^2+x]| is divisible by

the determinant Delta=|[a^2+x, ab, ac] , [ab, b^2+x, bc] , [ac, bc, c^2+x]| is divisible by