Home
Class 11
MATHS
If m,a,b gt0 ; a!=1; b!=1; then loga (m)...

If `m,a,b gt0 ; a!=1; b!=1`; then `log_a (m) =(log_b (m))/(log_b (a))`

Promotional Banner

Similar Questions

Explore conceptually related problems

STATEMENT -1 : If f(x) = log_(x^(2)) (log x) , " then" f'( e) = 1/e STATEMENT -2 : If a gt 0 , b gt 0 and a ne b then log_(a) b = (log b)/(log a)

The value of a^((log_b(log_bx))/(log_b a)), is

Show that log_(b)a log_(c)b log_(a)c=1

If a,b,c gt1 then Delta=|(log_(a)(abc),log_(a)b,log_(a)c),(log_b(abc),1,log_(b)c),(log_(c)(abc),log_(c)b,1)| equals

If a,b,c are in GP then 1/(log_(a)x), 1/(log_(b)x), 1/(log_( c)x) are in:

m;n;a>0;a!=1;log_(a)((m)/(n))=log_(a)m-log_(a)n