Home
Class 11
MATHS
If y^2=xz and a^x=b^y=c^z, then prove th...

If `y^2=xz` and `a^x=b^y=c^z`, then prove that `log_b a = log_c b` .

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If y^(2)=xz and a^(x)=b^(y)=c^(z), then prove that (log)_(a)b=(log)_(b)c

If x,y,z are in G.P.nad a^(x)=b^(y)=c^(z), then log_(b)a=log_(a)c b.log_(c)b=log_(a)c c.log_(b)a=log_(c)b d.none of these

If x,y,z are in G.P.and a^(x)=b^(y)=c^(z), then (a) log ba=log_(a)c(b)log_(c)b=log_(a)c(c)log_(b)a=log_(c)b(d) none of these

If a^(x)=b,b^(y)=c and c^(z)=a, prove that xyz=1

if x^(2) + y^(2) = z^(2) then prove that log_(y)(z+x) + log_(y) (z-x)=2

a=y^(2),b=z^(2),c=x^(2) then prove that log_(a)x^(3)*log_(b)y^(3)*log_(c)z^(3)=(27)/(8)

If a^(x)=b^(y)=c^(z)=d^(w) then log_(a)(bcd)=

If x=b-c+a, y=c-a+b, z=a-b+c , then prove that (b-a) x + (c-b)y +(a-c)z=0