Home
Class 11
MATHS
Solve: |x-1|^((log(10) x)^2-log(10) x^2...

Solve: `|x-1|^((log_(10) x)^2-log_(10) x^2)=|x-1|^3`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for x.x^(log_(10)x+2)=10^(log_(10)x+2)

Solve for x, (a) (log_(10)(x-3))/(log_(10)(x^(2)-21))=(1)/(2),(b)log(log x)+log(log x^(3)-2)=0; where base of log is 10 everywhere.

Solve (x^(log_(10)3))^(2) - (3^(log_(10)x)) - 2 = 0 .

(log_(10)x)^(2)+log_(10)x^(2)=(log_(10)2)^(2)-1

Solution x^((log_(10)x)^(2)-(3log_(10))^(x+1))>1000 for x in R is

log_(10){log10x}=1 then x

The value of p in R for which the equation sin^(-1)((log_(10)x)^(2)-2log_(10)x+2)+tan^(-1)((log_(10)x)^(2)-2log_(10)x+2)+cos^(-1)((log_(10)x)^(2)-2(log_(10)x))=p possess solution is

Solve (x+1)^(log_(10)(x+1))=100(x+1)

Solve log_(10)(x^(2)-2x-2) le 0 .