Home
Class 12
MATHS
Find the value of: cos^(-1)(1/2)+2sin^(-...

Find the value of: `cos^(-1)(1/2)+2sin^(-1)(1/2)`

Text Solution

AI Generated Solution

To find the value of \( \cos^{-1}(1/2) + 2\sin^{-1}(1/2) \), we will follow these steps: ### Step 1: Calculate \( \cos^{-1}(1/2) \) The value of \( \cos^{-1}(1/2) \) corresponds to the angle whose cosine is \( 1/2 \). From trigonometric values, we know: \[ \cos^{-1}(1/2) = \frac{\pi}{3} \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of cos^(-1) (1/2) +2 sin^(-1)(1/2)

Find the value of cos^(-1) (-1/2) -2 sin^(-1) (-1/2)

Write the value of cos^(-1)(-(1)/(2))+2sin^(-1)((1)/(2))

The value of 2cos^(-1)(-1/2)-2 sin^(-1)(-1/2)-cos^(-1)(-1) is

Find the value of : cos[(pi)/3-"sin"^(-1)(-1/2)]

6. Find the value of tan^(-1) (1) + cos^(-1)(-1/2)+ sin^(-1)(-1/2)

6.Find the value of tan^(-1)(1) + cos^(-1)(-1/2) + sin^(-1)(-1/2)

Find the value of: tan^(-1)(1)+cos^(-1)(-(1)/(2))+sin^(-1)(-(1)/(2))

If x in [-1, 0) then find the value of cos^(-1) (2x^(2) -1) -2 sin^(-1) x

Find the value of: tan^(-1)[2cos(2sin^(-1)((1)/(2)))]