Home
Class 12
MATHS
The value of the limit lim(a->oo)((int0^...

The value of the limit `lim_(a->oo)((int_0^asin^4x dx)/a)` Is equal to :

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the limit lim_(x to -oo) (sqrt(4x^(2) - x )+2x) is

The value of limit lim_(t rarr oo)(int_(0)^(1)(tan^(-1)x)^(2)dx)/(sqrt(t^(2)+1))

int_0^oo 1/(1+x^2)dx is equal to :

Calculate the reciprocal of the limit lim_(x->oo) int_0^x xe^(t^2-x^2) dt

The value of limit lim_(x rarr oo)pi(x ln(1+pi x)-x ln(pi x)) is

The value of lim_(x->oo)(int_0^x(tan^(-1)x)^2)/(sqrt(x^2+1))dx

The value of lim_(a rarr oo)(1)/(a^(2))int_(0)^(a)ln(1+e^(x))dx equals

The value of lim_(a rarr oo)(1)/(a^(2))int_(0)^(a)ln(1+e^(x))dx equals

The value of the integral int _0^oo 1/(1+x^4)dx is