Home
Class 12
MATHS
Let f(x) = max. {|x^2 - 2| x ||,| x |} t...

Let `f(x) = max. {|x^2 - 2| x ||,| x |}` then number of points where `f(x)` is non derivable, is :

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = [[x^(3),|x| =1] , then number of points where f(x) is non-differentiable is

Consider the function f(x)=min{|x^(2)-9|,|x^(2)-1|} , then the number of points where f(x) is non - differentiable is/are

Consider the function f(x)=min{|x^(2)-4|,|x^(2)-1|} , then the number of points where f(x) is non - differentiable is/are

Consider the function f(x)=min{|x^(2)-9|,|x^(2)-1|} , then the number of points where f(x) is non - differentiable is/are

Consider the function f(x)=min{|x^(2)-4|,|x^(2)-1|} , then the number of points where f(x) is non - differentiable is/are

Let f(x)=max{4,1+x^(2),x^(2)-1}AA x in R Total number of points,where f(x) is non- differentiable,is equal to

Let f:[0,(pi)/(2)]rarr R a function defined by f(x)=max{sin x,cos x,(3)/(4)} ,then number of points where f(x) is non-differentiable is

f:(0,oo)rArr R f(x)= max(x^(2),|x|) then the number of points where function is non- differentiable,is

Let f: [0,(pi)/(2)]rarr R be a function defined by f(x)=max{sin x, cos x,(3)/(4)} ,then number of points where f(x) in non-differentiable is

Let f(x) = max { 4, 1+x^(2) ,x^(2) -1} AA x in R Total numbner of points , where f(x) is non -differentiable , is equal to