Home
Class 11
MATHS
lim(n->oo)[log(n-1)(n)logn(n+1)*log(n+1)...

`lim_(n->oo)[log_(n-1)(n)log_n(n+1)*log_(n+1)(n+2).....log_(n^k-1) (n^k)]` is equal to :

Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(n=1)^(1023)log_(2)(1+(1)/(n)) is equal to

sum_(n=1)^(1023)log_(2)(1+(1)/(n)) is equal to

N=log_(2)5*log_((1)/(6))2*log_(3)((1)/(6)),then3^(N) is equal to

If n=(2017)! , then what is (1)/(log_(2)n)+(1)/(log_(3)n)+(1)/(log_(4)n)+....+(1)/(log_(2017)n) equal to?

(1)/(log_(2)(n))+(1)/(log_(3)(n))+(1)/(log_(4)(n))+....+(1)/(log_(43)(n))

(1)/(log_(2)(n))+(1)/(log_(3)(n))+(1)/(log_(4)(n))+....+(1)/(log_(43)(n))