Home
Class 14
MATHS
[(1-ix)/(1+ix)=a-ib" and "a^(2)+b^(2)=1"...

[(1-ix)/(1+ix)=a-ib" and "a^(2)+b^(2)=1" where "a,b in R],[(2a)/((1+a)^(2)+b^(2))quad " (b) "(2b)/((1+a)^(2)+b^(2))]

Promotional Banner

Similar Questions

Explore conceptually related problems

If (1-ix)/(1+ix)=a-ibanda^(2)+b^(2)=1,where a,b in Randi=sqrt(-1), then x is equal to

If (1-ix)/(1+ix)=a-ibanda^(2)+b^(2)=1,where a,b in Randi=sqrt(-1), then x is equal to

If (1-ix)/(1+ix)=a-ibanda^(2)+b^(2)=1,where a,b in Randi=sqrt(-1), then xis equal to

If (1-ix)/(1+ix)=a-ibanda^(2)+b^(2)=1,where a,b in Randi=sqrt(-1), then xis equal to

if (1-ix)/(1+ix)=a-ib ,then prove that a^2+b^2=1 (a,b x are real).

|(1+a^(2)-b^(2), 2ab, -2b),(2a, 1 -a^(2)+b^(2),2a),(2b, -2a, 1-a^2-b^2)|=(1 + a^2 + b^2)^(3) .

Show that |(1+a^(2)-b^(2),2ab,-2b),(2ab,1-a^(2)+b^(2),2a),(2b,-2a,1-a^(2)-b^(2))|=(1+a^(2)+b^(2))^(3)

If a+ib=(c+i)/(c-i), where c is real,prove that: a^(2)+b^(2)=1 and (b)/(a)=(2c)/(c^(2)-1)

Let A=[{:(a_(1)),(a_(2)):}] and B= [{:(b_(1)),(b_(2)):}] be two 2xx1 matricews with real entires such that A=XB , where x=(1)/(sqrt(3))[{:(1,-1),(1,k):}], and k in R . If a_(1)^(2) +a_(2)^(2)=(2)/(3) (b_(1)^(2)+b_(2)^(2)) and (k^(2)+1)b_(2)^(2) ne-2b_(1) b_(2) then the value of k is.....