Home
Class 12
MATHS
" 262.If "y=ax^(n+1)+(b)/(x^(n));" Show ...

" 262.If "y=ax^(n+1)+(b)/(x^(n));" Show that ":x^(2)(d^(2)y)/(dx^(2))=n(n+1)y

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=2^(n+1)+(3)/(x^(n)) , then x^(2)(d^(2)y)/(dx^(2)) is

If y = ax^(n+1) + bx^(-1) , then x^(2) (d^(2)y)/(dx^(2)) =

If x^(m).y^(n)= (x+ y)^(m+n) then show that, (d^(2)y)/(dx^(2))=0

If y=ax^(n+1)+bx^(-n), then x^(2)(d^(2)y)/(dx^(2))=n(n-1)y(b)n(n+1)y(c)ny(d)n^(2)y

If y=ax^(n+1)+bx^(-n), then x^(2)(d^(2)y)/(dx^(2)) is equal to n(n-1)y(b)n(n+1)yny(d)n^(2)y

If y=ax^(n+1)+bx^(-n) then show that x^(2)y''=n(n+1)y .

If y=((1+x)/(1-x))^(n) , prove that (1-x^(2))(d^(2)y)/(dx^(2))=2(n+x)(dy)/(dx).

If x^(m)y^(n)=(x+y)^(m+n), prove that (d^(2)y)/(dx^(2))=0

If x^(m)y^(n)=(x+y)^(m+n) , prove that : (d^(2)y)/(dx^(2))=0 .