Home
Class 12
MATHS
|[a^(3)+x,ab,ac],[ab,b^(2)+x,bc],[ac,bc,...

|[a^(3)+x,ab,ac],[ab,b^(2)+x,bc],[ac,bc,c^(2)+x]|=

Promotional Banner

Similar Questions

Explore conceptually related problems

The determinant "det(A)"= |[ a^(2) +x,ab,ac], [ab, b^(2) +x,bc,] [ac,bc, c^(2) +x]| is divisible by a. x b. x^2 c. x^3 d. none of these

The determinant "det(A)"= |[ a^(2) +x,ab,ac], [ab, b^(2) +x,bc,] [ac,bc, c^(2) +x]| is divisible by a. x b. x^2 c. x^3 d. none of these (Correct options maybe more than one)

|(a^(2)+x,ab,ac),(ab,b^(2)+x,bc),(ac,bc,c^(2)+x)|

Determinant Delta=|(a^(2)+x,ab,ac),(ab,b^(2)+x,bc),(ac,bc,c^(2)+x)| is divisible by a)abc b) x^(2) c) x^(3) d)None of these

show that |[a^2+x^2,ab ,ac],[ab,b^2+x^2,bc],[ac,bc,c^2+x^2]| is divisible x^4

If A = [[0,c,-b],[-c,0,a],[b,-a,0]] and B = [[a^(2),ab,ac],[ab,b^2,bc],[ac,bc,c^(2)]] then A B=

If A=[(a^(2),ab,ac),(ab,b^(2),bc),(ac,bc,c^(2))], B=[(0,c,-b),(-c,0,a),(b,-a,0)] then AB=

|(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2))|=

|(a^(2)+1,ab,ac),(ab,b^(2)+1,bc),(ac,bc,c^(2)+1)|=

Prove that |(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2))| = 4a^(2)b^(2)c^(2) .