Home
Class 12
MATHS
[" The two curves "ax^(2)+by^(2)=1" and ...

[" The two curves "ax^(2)+by^(2)=1" and "a'x^(2)+b^(2)y^(2)=1" incusect "],[" orthogonally if "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If the curve ax^(2)+by^(2)=1 and a'x^(2)+b'y^(2)=1 intersect orthogonally, then

The curves ax^(2)+by^(2)=1 and Ax^(2)+B y^(2) =1 intersect orthogonally, then

Show the condition that the curves ax^(2)+by^(2)=1 and a'x^(2)+b'y^(2)=1 should intersect orthogonally is (1)/(a)-(1)/(b)=(1)/(a')-(a)/(b)

Show that the condition that the curves ax^(2) + by^(2) = 1 and a_(1)x^(2) + b_(1)y^(2) = 1 should intersect orthogonally such that (1)/(a) - (1)/(b) = (1)/(a_(1)) - (1)/(b_(1)) .

If the curves ax^(2)+by^(2)=1 and a'x^(2)+b'y^(2)=1 are orthogonally then …………

If two curves ax^(2)+by^(2)=1 and a'x^(2)+b'y^(2)=1 intersect orthogonally,then show that (1)/(a)-(1)/(b)=(1)/(a')-(1)/(b')

If the curves ax^(2) + by^(2) =1 and a_(1) x^(2) + b_(1) y^(2) = 1 intersect each other orthogonally then show that (1)/(a) - (1)/(b) = (1)/(a_(1)) - (1)/(b_(1))

If the curves 2x^(2)+3y^(2)=6 and ax^(2)+4y^(2)=4 intersect orthogonally, then a =

If the curves 2x^(2)+3y^(2)=6 and ax^(2)+4y^(2)=4 intersect orthogonally, then a =